Title: COAGULATION TEST SYSTEM

Abstract: A test element for the determination of coagulation in a plasma or whole blood sample having a first surface (2a) and a second surface (4a) in a predetermined distance opposite from each other, said both surfaces being provided with two substantially equivalent patterns forming areas of high and low surface energy which are aligned mostly congruent, whereby the areas of high surface energy create a sample distribution system (f) with at least one detection area (fa), wherein the detection area(s) (fa, 6a) of the first and second surfaces (2a, 4a) is/are provided with at least one coagulation stimulation reagent. The coagulation test element is provided with an integrated quality control system suitable for dry reagent test strip format with a very small sample volume of about 0.5μL. The production of the inventive coagulation test element involves only a small number of uncomplicated production steps enabling an inexpensive production of the element.
Coagulation Test System

Field of the Invention

The invention relates to a coagulation test system for measuring the coagulation of blood in a physiological sample fluid.

Background of the Invention

The process of blood coagulation is complex and involves a large number of blood components including the generation of fibrin fibres. The fibres are formed by the polymerization of molecules of a protein called fibrinogen. Fibrinogen is catalyzed from an enzyme called thrombin, which is itself catalyzed from the enzyme prothrombin.

The prothrombin time test (PT test) is commonly employed in hospitals, clinics and laboratories to ascertain the ability of a blood sample to clot. The test is extensively used for pre-operative evaluations and for anti-coagulant therapy administered to cardiac patients, for example. The PT test is based upon the length of time required for a sample of blood to clot under the influence of certain reagents such as calcium ions and thromboplastin.

Similarly, individuals suffering from cardiac and vascular diseases and/or having mechanical heart valves are often treated with a daily regimen of blood thinning drugs commonly referred to as anticoagulants. The amount of anticoagulant in the blood stream, to be effective, must be maintained at a level deemed to be proper by a physician. The consequence of improper amounts of anticoagulant in the blood stream is serious, leading to strokes or haemorrhages.
Patients achieving this balance must endure frequent, costly and inconvenient visits to a clinic where the blood’s ability to clot can be closely monitored. The monitoring is undertaken with periodic PT measurements as measured by the International Normalized Ratio (INR). For example, an INR greater than 3 results in a higher risk of serious haemorrhage, whilst an INR of 6 increases the risk of developing a serious bleed nearly 7 times that of someone with an INR below 3. In contrast, an INR below 2 is associated with an increased risk of stroke. Therefore, monitoring of the prothrombin time is recommended to ensure that the dose levels are within the therapeutic range.

By monitoring components such as fibrinogen and prothrombin levels within the blood, a physician may acquire meaningful data concerning a patient's blood clotting abilities or other clinical conditions. The proteins that are involved in the clotting (coagulation) process are commonly referred to as factors. The factors are numbered I-XIII, and reference to a factor by its number identifies the corresponding protein to those skilled in the art.

The activation of prothrombin occurs as a result of the action of blood clotting Factor Xa, which is formed by the activation of Factor X during proteolysis. There are two molecular pathways that lead to the activation of Factor X to give Xa, generally referred to as the extrinsic and intrinsic pathways for blood clotting. The extrinsic pathway utilizes only a tissue factor specific to an injured membrane while the intrinsic pathway utilizes only factors internal to the circulating blood. Both of these pathways originate with the interaction of enzymes involved in the blood clotting process with surface proteins and phospholipids.

Various tests have been introduced to measure the coagulation process in both the extrinsic and intrinsic pathways of a patient's blood sample. For example, the Activated Partial Thromboplastin Time (APTT) test measures the coagulation factors of the intrinsic pathway. These factors include Factors XII, XI, X, IX, VIII, V, II and I which may be abnormal due to heredity, illness, or the effects of heparin therapy. Thus, the APTT test is useful as a pre-surgical screen and for monitoring heparin therapy. Similarly, the testing of the fibrinogen polymerization rate using a Thrombin Time (TT) test or a quantitative fibrinogen test providing useful diagnostic data for patients on Warfarin therapy (brand name: Coumadine®) or related pharmaceuticals.

As mentioned previously, the test most commonly used to monitor anticoagulant therapy is the one-stage prothrombin time test. The reaction measured by the PT test is:

$$\text{Blood} + \text{Thromboplastin} + \text{Ca}^{++} \rightarrow \text{Fibrin Clot}$$
Thromboplastin is a phospholipid-protein preparation that activates clotting in blood specimens. Thromboplastins are commercially available from different manufacturers and can be obtained from lung, brain, or placenta extracts and also be synthetically manufactured. Generally, PT values between different laboratories are not in concordance, thus making such values unacceptable for defining therapeutic ranges for anticoagulant therapy.

An International Normalized Ratio (INR) was therefore developed and adopted by the World Heath Organisation in the early 1980's. The object of the normalised ratio was to standardise results from various thromboplastins and coagulation analyzers to become equivalent. Consequently, under the ratio a manufacturer assigns an International Sensitivity Index (ISI) to each batch of thromboplastin which indicates the relative sensitivity of the thromboplastin compared to an international reference thromboplastin. For example, if a thromboplastin has the same sensitivity as the reference thromboplastin, then the ISI is 1.0. An ISI value greater than 1.0 indicates that a thromboplastin is not as sensitive as the reference thromboplastin. The equation below is used to calculate the INR value using a PT value and a ISI value:

\[\text{INR} = \left(\frac{\text{PT}_{\text{Patient}}}{\text{PT}_{\text{mean-normal}}} \right)^{\text{ISI}} \]

The mean normal PT is determined in each laboratory by averaging the PT values from a number of healthy individuals.

The detection of the formation of fibrin clots date back to the mid 1850's and early methods were manual. By 1910, an apparatus to determine the change in viscosity of a blood sample as it underwent clotting was developed. The apparatus provided a direct indication of voltage which could be plotted against clotting time. In the 1920's, photoelectric techniques became prominent to detect variations in light transmittivity of a blood sample during clotting with variations in the optical transmittivity of the sample observed by a galvanometer. Further investigations of the coagulation of blood plasma using improved photoelectric techniques were conducted in the mid 1930's with optical density increasing as blood coagulated being observed. This led to the development of an instrument which displayed increasing density as a clot formed.
Modern optical density detection systems therefore operate on the principle that an increase in the optical density of a coagulating sample decreases the transmittivity of light through the sample. In a typical optical density detection system, a test blood sample is placed in a transparent sample cuvette and reacted with a coagulation stimulating reagent such as thromboplastin. Light or electro-magnetic radiation in the visible or near-infrared spectrum is then passed through the plasma-reagent mixture as the sample clots. As the biochemical change leading to fibrin formation takes place within the sample, the optical density of the sample increases. Output voltages corresponding to the optical density of the sample enables, after processing with a processing unit, to determine the coagulation of the sample.

While the existence of the relationship between fibrinogen (fibrin) levels and optical density has long been recognized, there has been wide disagreement concerning the nature and proper methodology for measuring the relationship, and numerous test parameters have been devised for determining fibrinogen levels using optical density data.

Further, the increased awareness about the negative effect of irregular blood coagulation time, the acceptance of self-monitoring and self-treatment has led to the development of a multitude of blood coagulation monitors and methods for personal use and point of care testing. However, these devices still lack the development state, economy, and convenience known from home glucose monitoring systems for diabetes patients.

An exemplary method and system for measuring blood coagulation time is disclosed in United States Patent 4,252,536. The method involves providing a mixture of a blood sample and a reagent, irradiating the mixture with light and detecting the amount of light scattered from the irradiated mixture producing an electrical signal representative thereof. Subsequently, a determination is made from the electrical signal a time at which the most rapid change in electrical signal is occurring and then determining as the end point at a time prior to the first time at which a change which 1/n that of the most rapid change occurred, where n is greater than 1. Most of the methods of measuring coagulation time are based on plasma being introduced into a cuvette and to analyse the properties of coagulation over a period of time.

European Patent Application 1,162,457 discloses a testing system for determining an appropriate coagulation promoting substance for administration to a patient as a therapy for improving clotting function using three sample wells to receive a selected amount of blood.
United States Patent 6,066,504 discloses an electrode assembly which provides quantitative measurement of viscosity changes over intervals of time to signal the coagulation or lysis of a blood sample.

European Patent 974,840 discloses fluidic diagnostic device for measuring an analyte concentration or property of a biological fluid using optical detection means.

PCT WO20047/044560 discloses a photometric determination of coagulation time in undiluted whole blood having a container for receiving a sample of undiluted whole blood, a light emission source for emitting light and a light detector for measuring an amount of light from said container.

US Patent 6,084,660 discloses a fluidic medical diagnostic device having at one end a sample port for introducing a sample and at the other end a bladder for drawing the sample to a measurement area, which measures an analyte concentration or a physical property of whole blood, particularly the coagulation time, only after first ensuring that a whole blood sample has been introduced into the device.

PCT WO2002/086472 discloses the use of fluorescent molecular rotors which vary in fluorescence intensity based on viscosity of the environment. The inventor further relates to a class of molecular motors that at modified with a hydrocarbon chain or hydrophilic group to allow for the measurement of membrane or liquid viscosity.

US Patent Application Publications US 2002/0110486A1 and US 2003/0031594 disclose a test strip comprising a plurality of reaction zones utilised for quality assurance purposes. The test strip requires a volume of about 20μL blood. However, if a user has to test frequently, as required for proper management of coagulation therapy, these large sample volumes are unpractical and disadvantageous.

PCT/EP 2004002284 discloses a dry reagent test element for the photometric detection and quantitative determination of an analyte, e.g. glucose, in a physiological fluid, e.g. blood, having a sample distribution system with at least two detection areas which is provided with an integrated calibration system and which requires very small sample volumes of about 0.5 μL.

However, up to now no test system exists, which is suitable for measurement of coagulation of a blood sample and which is provided with integrated quality control means and requires only small sample volumes.

Therefore, it is the object of the present invention to provide a test system for determining the coagulation of whole blood which requires only minimal steps, such as the application of blood onto a strip, which provides a subsequent automatic calculation of an
accurate test result including a means for 'on-strip' quality control and which requires only a small sample amount.

It is a further object of the present invention, to provide a production process for a coagulation test element which does not involve many and complicated production steps and therefore is inexpensive and usable for products assisting patients in self-monitoring blood coagulation and/or in a physician's place of work.

Summary of the invention

Thus, the present invention provides a test element for the determination of coagulation in a plasma or whole blood sample having a first surface and a second surface in a predetermined distance opposite from each other, said both surfaces being provided with two substantially equivalent patterns forming areas of high and low surface energy which are aligned mostly congruent, whereby the areas of high surface energy create a sample distribution system with at least one detection area, wherein the detection area(s) of the first and/or second surfaces is/are provided with at least one coagulation stimulation reagent.

In another aspect the present invention provides a method for preparing a coagulation test element.

In a further aspect the present invention provides a coagulation test system consisting of a coagulation test element and a meter device for performing blood coagulation assays using a simplified format to provide a verified result in accordance with worldwide standards by providing on strip quality control.

A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description of illustrative and preferred embodiments in conjunction with the attached drawings.

Brief description of the drawings

Figure 1 shows a perspective view of one embodiment of the coagulation test element of the present invention provided in shape of a test strip.

Figure 2 shows a perspective view of the embodiment according to Figure 1, showing the sample distribution enlarged.

Figure 3 shows an exploded perspective view of the device according to Figure 1, showing the three layers separately.

Figure 4 shows different forms of the discontinuity of the centre layer forming the sample cavity together with the first and second surface.
Figure 5a is a sectional view of a detection area of the sample distribution system constructed by hydrophobic guiding elements.

Figure 5b is a sectional view of another embodiment of a detection area of the sample distribution system using hydrophilic pathways.

Figure 6 shows different embodiments of the sample distribution system with different patterns of pathways and detection areas suitable for different evaluation methods.

Figure 7a shows the sample distribution system of Figure 5b in conjunction with a light emitter and detector arrangement in a section view suitable to evaluate the changes in light absorbance of the sample.

Figure 7b shows the sample distribution system of Figure 5b in conjunction with a detector means configured to evaluate the changes in the fluorescence signal of a molecular rotor added to the sample or to evaluate the turbidity of the supplied sample fluid.

Figure 8 shows different molecular rotors and their molecular structure;

Figure 9 is a graph showing the schematic evaluation of coagulation results with implemented positive and negative quality controls.

Figure 10 shows the optical spectrum of whole blood from 500 to 700 nm.

Figure 11 provides a graph displaying the progress of a blood coagulation reaction initiated with ThromboRel S® and monitored at 600 nm.

Figure 12 shows a simplified block diagram of an example meter for use in a method of the invention.

Figure 13 shows the influence of registration failures during the lamination process on the sample volume of the test element and the top respectively the sectional view of an alternative embodiment, which allows higher tolerances for the registration of base and cover layer without compromising on the test strip quality.

Figure 14 shows the production steps of the coagulation test elements with strip shape.

Detailed description of the invention

As shown in Figure 1 and Figure 2, the coagulation test strip 1 of the present invention is a multiple layer arrangement comprising a base layer 2, a centre layer 3 overlaying the base layer 2, and a cover layer 4 overlaying the centre layer 3. The centre layer 3 presents a discontinuity 5, which creates a hollow cavity in conjunction with the base layer 2 and the cover layer 4. Within said cavity there is located a sample distribution system 6 which is connected to a sample application area 9 located on one side of the coagulation test strip. The sample application area 9 as interface to the user is preferably formed by a convex
curve 10 extending from one major side of the coagulation test strip for easier application of the sample. Opposite to the sample application area 9, 10 on the second major side of the coagulation test strip is the location of an air vent 11 allowing the displacement of air while the physiological or aqueous fluid is distributed to the predetermined detection areas 6a, 6'a (see Figure 3). It might be noted that the construction requires only one air vent independent of the amount of predetermined detection areas used within the coagulation test element. The described elements of the sample distribution system with areas of high surface energy, sample application area, air vent, centre layer and discontinuity in the centre layer form the totality of the coagulation test element, which creates the intrinsic capillary action to exert the distribution of the applied physiological or aqueous fluid to the predetermined detection areas.

In addition, the coagulation test strip 1 possesses registration features 7, 8 useful to differentiate between several kinds of test strips for the determination of different parameters such as Prothrombin Time (PT) and Activated Partial Thromboplastin Time (APTT). By this means, a multi analyte meter could be instructed to run a special program or procedures with selectable parameters upon strip insertion required for the determination of different parameters. As illustrated in Figure 3, which represents the multi-layer arrangement of Figure 1 and 2 in an exploded view, the base layer 2 provides a first surface 2a, and the cover layer 4 provides a second surface 4a. The first surface 2a and the second surface 4a are patterned with areas which will create the sample distribution system 6. The pattern of the sample distribution system 6 comprises a predetermined number of detection areas 6a and sample pathways 6b, which are aligned and registered mostly congruent upon assembly of the multi-layer arrangement. The centre layer 3 defines the distance between the first surface 2a of the base layer 2 and the second surface 4a of the cover layer 4 and has a discontinuity 5 to form a hollow cavity together with the first surface 2a of the base layer 2 and the second surface 4a of the cover layer 4. The sample distribution system 6 which will be formed between the first surface 2a and second surface 4a is located within the cavity created by the discontinuity 5 of the centre layer 3 and the first surface 2a of the base layer 2 and the second surface 4a of the cover layer 4. Preferably, the hollow cavity is substantially larger by design than the sample distribution system.

Since the purpose of the discontinuity 5 of the centre layer is only to create a cavity for the sample distribution system 6, the discontinuity 5 of the centre layer 3 can have different forms; examples thereof are shown in Figure 4. Figure 4a shows an umbrella shaped coagulation test element cavity 12. Figure 4b shows a rectangular coagulation test
element cavity 13, and in Figure 4c the sample cavity 14 has a circular shape. The discontinuity 5 of the centre layer 3 does not influence the size of the predetermined detection areas 6a and the size of the pathways 6b of the sample distribution system 6 and therefore does not influence or change the required sample volume. Compared to the sample distribution system 6, the cavity shapes shown in Figure 4 are rather simple, thus allowing the application of simple punch tools and fast processing with less demand on the registration accuracy.

The sample distribution system 6 located in the cavity formed by the discontinuity 5 of the centre layer 3 and the first surface 2a of the base layer 2 and the second surface 4a of the cover layer 4 is formed by creating areas of high and low surface energy on said surfaces 2a and 4a. The areas of high and low surface energy on the first surface 2a of the base layer 2 and the second surface 4a of the cover layer 4 are aligned and registered mostly congruent to each other. Since the applied physiological fluid or any other aqueous sample is wetting only the areas with high surface energy, it is thus constrained within the predetermined flow paths 6b and detection areas 6a of the sample distribution system 6 and between the first surface 2a of the base layer 2 and the second surface 4a of the cover layer 4.

Figure 5a shows a construction of the sample distribution system 6 using hydrophobic “guiding elements”. In this embodiment of the coagulation test element of the present invention the base layer 2 and the cover layer 4 are coated with a hydrophobic layer 16, except the areas, which will form the sample pathways and detection areas. The hydrophobic layer 16 creates an area with low surface energy, which will exert a repellent force onto an applied sample fluid 15 and constrain the sample fluid 15 therefore to the areas of high surface energy which will form the sample distribution system 6.

Preferably, the hydrophobic layer is applied on a hydrophilic surface, which is wettable by the physiological or aqueous fluid. The procedure described above requires a hydrophilic surface, which can be produced from a natural hydrophilic polymer such as cellophane or glass as well as from a hydrophobic surfaces of common polymers (examples are given below) by rendering the hydrophobic surface hydrophilic using a coating process or physical or chemical plasma deposition of hydrophilic monomers that can be vaporised in vacuum, e. g. silicon dioxide, ethylene oxide, ethylene glycol, pyrrolo or acrylic acid. Subsequently, the pattern of “guiding elements” can be realized by printing hydrophobic ink on the hydrophilic surfaces of the base and cover layers.
A suitable hydrophobic ink will have contact angles with water of typically more than 100° and a surface energy of typically less than 25 mN/m and contain typically monomers, oligomers, and polymers with hydrophobic functions, hydrophobing additives, or hydrophobic pigments and fillers.

Figure 5b shows another construction of the sample distribution system using hydrophilic pathways. In this embodiment of the coagulation test element the base layer 2 and the cover layer 4 are coated with a hydrophilic layer 17 thereby creating areas of high surface energy.

The hydrophilic layer 17 printed on the hydrophobic surface is highly wettable by a physiological or aqueous fluid; thus, the areas of high surface energy creating the hydrophilic pathways of the sample distribution system will exert a positive capillary force onto the applied physiological or aqueous sample fluid to transport the sample fluid to the separate detection areas.

The hydrophilic layer 17 can be realized by printing hydrophilic or amphiphilic agents on a hydrophobic surface. Inks with hydrophilic functions can be realised from a wide selection of high molecular weight water and alcohol soluble polymers and mixtures thereof. Particularly useful are derivatives prepared from alginites, cellulose, hydroxyethyl cellulose, gums, polyalcohols, polyethylene-glycols, polyethylene-oxides, vinylpyrididone, polystyrene sulfonates, polysulfonates, alkyl-phosphocholine derivates and others; particularly useful are also organo-modified silicone acrylates, which are a cross-linkable species of organo-modified polysiloxanes and fluorinated surfactants. Suitable coatings provide a contact angle with water of typically less than 35° and a surface energy of typically more than 50 mN/m.

The base layer and cover layer suitable as substrate for the printing process may be formed of a material like glass, polyvinyl acetate, poly-methyl-methacrylate, poly-dimethylsiloxane, polyesters and polyester resins containing fluorene rings, polystyrenes, polycarbonates and polycarbonate-polystyrene graft copolymers, terminal modified polycarbonates, polyolefins, cycloolefins and cycloolefin copolymers, and/or olefin-maleimide copolymers.

In case the substrate has an intermediate hydrophobic character, the printing of hydrophilic pathways with a surrounding hydrophobic pattern, i.e., a combination of the constructions of Figure 5a and Figure 5b, is possible as well.

In an alternative embodiment (not shown), either the first or second surface is provided with the hydrophilic/hydrophobic pattern whereas the corresponding surface
provides a homogeneous pattern of hydrophilic pixels surrounded by a hydrophobic area thereby creating a surface with semi hydrophilic and semi hydrophobic character (amphiphilic character), which eliminates the necessity to align the hydrophilic and hydrophobic pattern of the first surface with an equivalent hydrophilic and hydrophobic pattern of the second surface. The properties of such an amphiphilic surface can be easily designed by the geometric pattern of the hydrophilic pixels and the overall ratio between the hydrophilic and the hydrophobic area. In the disclosed invention the amphiphilic character, respectively the ratio between hydrophilic pixels and hydrophobic areas, is designed that the sample fluid progresses from hydrophilic pixel to hydrophilic pixel only if the opposite surface provides hydrophilic character. If the opposite surface provides hydrophobic character the movement of the fluid within the capillary gap of the coagulation test element will stop. This mechanism allows the above-described method to form a functional coagulation test element without the stringent requirement of precise registration of the corresponding pattern of the sample distribution system provided on the first and second surface. However, preferably both the first and the second surface are provided with equivalent patterns of high and low surface energy to ensure a quick distribution of the sample fluid within the hydrophilic pathways of the sample distribution system.

Moreover, it is possible to physically elevate the areas of high surface energy of first and second surfaces from the areas of low surface energy by etching, embossing, or simply by printing the hydrophilic layer with about three to five times increased thickness on the first and the second surface. Due to this elevation the capillary gap of the hydrophilic pathways gets smaller in relation to the surrounding area and exerts a higher capillary forth on the sample liquid.

The volume requirement for the sample distribution system contained in the coagulation test element of the preferred embodiment is with about 0.5μL-1.0μL very low and requires only about 100nL - 150nL per detection area, whether the areas of high and low surface energy are created by hydrophobic guiding elements or hydrophilic pathways or by a combination of both. However, it will be obvious for the one skilled in the art that the volume of the sample distribution system will vary with various designs and with the number of employed predetermined detection areas.

Figure 6 shows different patterns of the sample distribution system, which can be realized by hydrophilic pathways as illustrated in Figure 5b, or by the hydrophobic "guiding elements" as illustrated in Figure 5a, or by a combination of hydrophilic pathways and hydrophobic guiding elements. The selected sample distribution system needs to be
appropriate for the selected physiological parameter to be evaluated and for the employed
detection chemistry.

Thus, the repetition of sample and standard measurements is possible for particular
serum or whole blood samples with the embodiments shown in row II to IV. Likewise, it is
possible to use the coagulation test element provided in row IV for the evaluation of two
coagulation parameters such as Prothrombin Time and Activated Partial Thrombin Time.

As stated above, the formation of a fibrin clot is dependent on a reaction between
Thromboplastin and Calcium ions reacting with blood as shown below:

\[\text{Thromboplastin} + \text{Ca}^{++} + \text{Blood (or Plasma)} \rightarrow \text{Fibrin clot} \quad \text{(Reaction 1)} \]

For Reaction (1) to take place, the detection areas 6a of the sample distribution
system 6 of the first surface 2a of the base layer 2 or the second surface 4a of the cover layer
are characterised in that they are coated with formulations 18, 19, as shown in Fig. 5a and
5b, which allow the promotion and detection of a coagulation reaction in a blood sample.

In one embodiment of the inventive test element, the formulation 18 contains a
coagulation stimulating reagent, such as thromboplastin (e.g. available from Dade Behring
Holding GmbH, Höchster Strasse 70, 65835 Liederbach, Germany), whereas formulation 19
contains calcium ions. The coagulation stimulating reagent is a promoter for the coagulation
of blood in a detection area thus allowing the detection of the optical properties by
transmission or absorbance photometry or light scattering.

The Prothrombin Time or the Activated Partial Thrombin Time can be monitored
by change of light absorbance or light scattering. During the coagulation process the
Fibrinogen is converted to Fibrin that forces the previously arbitrary distribution of the red
blood cells and platelets into a mostly associated stage, whereby the red blood cells and
platelets becoming trapped and connected with the Fibrin fibres and each other while
forming the blood clot. These changes in the physical consistency of the blood sample leads
to a reduction of scatter centres and therefore to a change in the light absorbance and
turbidity of the examined blood sample. For the evaluation of the changes in light
absorbance the detector arrangement shown in Figure 7a is suitable.

Figure 7a shows a detector arrangement for measuring the optical density of the
sample within the coagulation test element according to Figure 5b. The arrangement
includes a light source 20, which emits light 24 of a certain wavelength in direction of the
sample detection area. The light emitted from the light source 20 passes through an optical
arrangement 21, e.g. a diffuser or lens, and an aperture 22, the base layer 2, the sample 15, and the cover layer 4 of the detection area and is detected on the opposite side of the device by a detector means 23.

In an other embodiment, the coagulation test element is designed to perform more than one determination to provide additional quality control measurements. In this case, the coagulation test element provides at least two, preferably three coagulation detection areas. Preferably, all of the detection areas 6’a on the first surface 2a are coated with the coagulation stimulating reagent 18 (e.g. Thrombin) promoting the reaction between the chemical components to generate a fibrin clot, whereas one sample detection area, e.g. 6a2, of the second surface 4a is coated with a chemical formulation containing a coagulation accelerator promoting a fast and complete coagulation (positive control), and an other detection area, e.g. 6a3, of the second surface 4a is provided with a chemical formulation containing a coagulation inhibitor suppressing the coagulation of blood (negative control).

For Reaction (1) to take place, the quantities of thromboplastin, calcium ions and, if necessary, quality control formulations, such as a coagulation inhibitor or accelerator, are precisely dosed on said sample detection areas. Preferably, the dosing is performed by drop on demand deposition methods, although other techniques such as ink jet printing would be known to persons skilled in the art. The exact dosing of the coagulation stimulating reagent applied to the sample detection areas is critical for a proper reaction procedure and thus for a reliable calculation of the end point of a coagulation reaction. For instance, in an example embodiment, the amount of thromboplastin can be constant throughout each sample detection area, whilst the concentration of coagulation inhibitor, such as EDTA, can be varied.

In a further embodiment of the inventive test element, in addition to the dosing of thromboplastin, calcium ions and quality control formulations, such as a coagulation inhibitor and accelerator, a further component, which functions as a fluorescence detection aid, can be applied to the sample detection areas of the first and/or second surface(s) 2a, 4a. If said detection areas are supplied with so called fluorescent molecular rotors, the coagulation reaction can be monitored by fluorescence.

Fluorescence is the emission of light from any substance and occurs from the first excited state of a molecule. In the initializing process such a molecule is excited by absorption of light. In the course of the following few nanoseconds the molecule returns to its ground state and gets rid of its excitation energy either by emission of light – called fluorescence - or by movements and rotations of its molecular backbone.
Fluorescence typically occurs from aromatic molecules. Aromatic molecules absorbing visible light in the range between 400 and 800 nm appear coloured. Furthermore, a chromophore is the part of a dye that determines the absorption and emission properties of the whole molecule. The amount or intensity of emission of a specific chromophore is quantified by its fluorescence quantum yield. The fluorescence quantum yield is defined as the number of emitted photons relative to the number of absorbed photons. A wide range of commonly used fluorescence dyes have a fixed quantum yield, whereby all dyes with large quantum yields approaching 100% emission efficiency displays the brightest emissions, such as Sulforhodamine 101 also known as Texas Red.

Dyes carrying flexible groups at the end of their chromophore are known as molecular rotors and show a dependence of their fluorescence quantum yield on the viscosity of the solvent. As the viscosity of the solvent increases, the fluorescence quantum yield of those dyes increases. This effect can be attributed to the mobility of the flexible, non-rigid groups at the end of the chromophore which is lowered by increasing viscosity.

The more mobility of the side groups attached to the chromophore is hindered, the more the dye molecule cannot relax to its ground state via movements of its molecular scaffold and gets rid of its excitation energy by emission of light. Examples for fluorescent dyes sensitive to the viscosity of the solvent can be found in the classes of xanthene, oxazine and carboppyronine dyes.

The effect can be attributed to the mobility of the diethylamino groups which is lowered by increasing viscosity. One example of such a dye in the xanthene class is Rhodamine B which is shown as a chemical structure below:

![Chemical Structure](image)

The chemical structure below shows as way of example the mobility of the diethylamino groups which is subsequently lowered by contact to the reagents of reaction 1. Since the reagents lead to the formation of a fibrin clot, i.e. the coagulation of a physiological fluid, the viscosity of the sample increases and subsequently the fluorescence of the
molecules. The marked diethylamino-groups at the end of the chromophore are non-rigid and rotate as marked around the bond. As this movement is strongly hindered by increased viscosity because of coagulation, the fluorescence emission of the dye is increased.

In respect to the disclosed invention fluorescence probes sensitive to change in the viscosity are most useful. Further examples of molecular rotors are Auramine O, Crystal violet 4, p-N,N-dimethylaminobenzonitrile 5, p-N,N-dimethylaminobenzonitrile 6, Julolidinebenzylidenemalononitrile, Rhodamine 19, Rhodamine G6, Rhodamine B, Oxazine 1, Oxazine 4, Oxazine 170. Their molecular structures are shown in Figure 8.

In case the reaction is monitored by fluorescence it is most useful to arrange the light source and the detection means not opposite each other and rather in an angle of approximately 90 degrees to achieve maximum sensitivity, as shown in Figure 7b. The preferred angle between the light source and the detection means is between 80 and 120 degrees but most preferably it is approximately 109 degrees and the coagulation test system is placed in the optical detection arrangement in way that the angle between the base layer and the light source and the angle between the cover layer and detection means is approximately 54 degrees to avoid background noise due to internal reflections on the different surfaces of the detection area (or more generally of the coagulation test system).

For full operation said detector 23 is configured in addition to the optical arrangement 21 and 22 with the optical filters 21a and 22a to discriminate between the excitation and the emission wave length, thus the detection means will only see the light 24 emanating from the fluorescence dyes and not the light 24a originated by the light source. Albeit, one skilled in the art will notice that the actual angle has to be optimised for a specific application, the required sensitivity, and the requirements of the meter respectively the detection device.

The coagulation test element 1 has at least one detection area 6a which is required for an accurate prothrombin time measurement, but in a preferred embodiment three
detection areas 6a1-6a3 can be utilised. The physical make up of coagulation test element 1 allows flexibility in the composition of compounds applied in various detection areas. For instance, detection areas 6a-6c can have different concentrations of the coagulation stimulating reagent, such as thromboplastin, applied on a first surface 2a of a base layer 2 whilst calcium ions and the fluorescent molecular rotor can be applied to a second surface 4a of a cover layer 4. Alternatively, all reagents can be applied either on the first surface 2a of the base layer 2 or the second surface 4a of the cover layer 4 of the coagulation test element 1.

After the physiological fluid, such as blood or plasma, is applied to the sample application area 9 and distributed to the detection areas by capillary action, it dissolves the coagulation stimulating reagent contained in the formulation 18 on the detection areas of the first surface 2a as well as the molecular rotor and/or a potential coagulation inhibitor such as EDTA contained in the formulation 19 on the predetermined detection areas of the second surface 4a forming a mixture of blood or plasma and coagulation stimulating reagent such as thromboplastin, and calcium ions plus the additional materials provided on the second surface.

Preferably, the coagulation stimulating reagents applied to the predetermined detection areas are readily soluble by a physiological fluid such as blood and positioned close to each other to allow rapid diffusive mixing of all components, thus enabling a fast reaction of the components contained in the detection areas to expedite a fast photometric determination of the forming coagulation reaction.

If there are more than two, preferably three, sample detection areas arranged within the sample distribution system, one, e.g. 6a1, can be used to detect the Prothrombin Time or the Activated Partial Thromboplastin Time. An additionally sample detection area, e.g. 6a2, can be configured to provide a negative control using a coagulation inhibitor on the second surface 4a or omitting the coagulation stimulating agent on the first surface 2a, whereby a further sample detection area, e.g. 6a3, can be configured to provide a positive control using a coagulation accelerator, e.g. a gelling agent mimicking the coagulation of blood even if blood would posses a coagulation deficiency. Thus, the processing means of the measurement device can compare the measurement result of the sample with the two provided standards allowing a clear decision or the indication of an erroneous measurement.

Figure 9 shows a schematic evaluation and measurement of the coagulation time using a molecular rotor as fluorescence probe and detection aid. The figure also shows the comparison of the measurement signal related to a blood sample 27 with a positive standard
26 providing the maximum fluorescence achievable after the full formation of the blood clot and the comparison with a negative standard 25 providing minimum fluorescence signal related to a non coagulated blood sample. After the application of the whole blood sample onto the sample application area 9 the blood sample 15 is transported by capillary action created by the sample distribution system to the different sample detection areas 6a/6'a shown in Figure 3. The sample will dissolve the coagulation stimulating reagent provided on the first surface 2a of the base layer 2 allowing the coagulation reaction to start immediately after the sample detection area 6'a1 is filled. The detection unit of the measurement device will register the introduction of the blood sample thus the processing means of the detection device can initiate to allow a time resolved evaluation of the coagulation reaction.

As mentioned above, one sample detection area, e. g. 6a2, can be configured as negative standard providing the means of comparing the measurement signal of the blood sample in sample detection area 6a1 with the measurement signal of a blood sample showing no coagulation reaction. Such behaviour can be achieved either by the deposition of non coagulation stimulating reagent in sample detection area 6'a2 or by the deposition of an coagulation inhibitor on sample detection area 6a2. Typical coagulation inhibitors are lithium heparin and sodium respectively the potassium salt of ethylenediaminetetraacetic acid (EDTA).

On the other hand, a positive standard can be realised by accelerating the coagulation reaction or by mimicking the viscosity of a fully formed blood clot with a different cross-linking agent, which provides a faster reaction time than a non pathogen blood sample, thus the positive reference value is achievable before the blood sample in detection area 6a1 is coagulated. This kind of cross-linking can be achieved providing the right concentration of alginate on the second surface 4a of the second layer 4. The alginate will mix with the blood and begin to gel respectively coagulated due to the reaction with the calcium ions inside the blood sample and/or additional calcium ions provided on the first surface of the base layer. However, one skilled in the art will recognize that other gelling agents might be applicable and useful for this reaction as well.

During the reactions the processing means of the measurement device can compare the reading of sample detection area 6a1 with the negative standard 25 and the positive standard 26. As soon as measurement signal of the blood sample, provided by sample detection area 6a1, reaches the same magnitude as the positive standard (indicated with numeral 28 of Figure 9) a processing unit of the measurement device can stop the timer and evaluate the final result. Further the processing unit can perform some additional quality
checks to verify that the analysis was performed correctly and provides meaningful data to the user/patient. In this respect, the processing unit can compare the actual measurement values of the positive and negative standards, which needs to be separated by a minimum and pre-programmed value. If the amplitude of both signals becoming to small the device can issue an error message that the determination was not successful. Further the device can calculate the slope 27 of the coagulation reaction and compare it again with some pre-programmed physiological values which describe the most extreme values observed by clinicians.

While monitoring the turbidity of the sample over a wide range of the spectrum, e. g. by using a halogen lamp as light source, it is useful to restrict the monitoring window to a narrow part of the spectrum if the sample changes are monitored by light absorbance. Figure 10 shows a spectrum of whole blood between 500 and 700 nm. The prevalent feature of the spectrum is the haemoglobin double peak 40 between 520 and 600 nm. Principally, one can evaluate the progress of the coagulation reaction by light absorption anywhere in the provided region of the whole blood spectrum it is less demanding on the technical measurement device if the reaction is monitored at a wave length outside of the haemoglobin absorbance range i.e. 600 nm as indicated by numeral 41.

Figure 11 provides an exemplary evaluation of coagulation reaction by light absorption at 600 nm. Blood is introduced in the coagulation test element via the sample application port 9 and the transmission of light is rapidly reduced respectively the absorbance of light is rapidly increased as indicated by numeral 42. Subsequently the coagulation formulation provided in the sample detection areas 6'a of the first surface 2a of the base layer 2 is dissolved and the coagulation reaction is initiated by the reaction of the tissue factor (tissue thromboplastin) with the blood or plasma sample. This point in time is defined as t=0 and the processing unit will start the recording of measurement data. The period of time between the events 42 and 43 can be understood as the lag phase of the reaction, here the full dissolution of the reagents and mixing with the blood or plasma sample is achieved and the tissue thromboplastin triggers a series of coagulation factors of the extrinsic pathway. Showing in the sequence the activation of factor VII, factor X, factor V, factor II. The last stages of the coagulation cascade can be monitored between event 43 and 44 where the fibrinogen is transformed into fibrin. Often the fibrin clot is not stable and starts deteriorating after the plateau 44 is reached. The deterioration rate and quantity depend on the amount of fibrin fibres in clot and varies form patient to patient. Normally, highly viscose blood samples show a slower deterioration then low viscose blood samples.
The result of the measurement generally and the result of the Prothrombin Time according to the above example have to be evaluated between the events 42 - 43 indicating the time period \(t_1 \) and between the events 43 - 44 indicating the time period \(t_2 \) following the generally equation 1:

\[
PT = f_{PT}(a \cdot [f(t_1)] + b \cdot [f(t_2)])
\]

Equation 1

The factors \(a \) and \(b \) are required to give a proportional weight to the time periods \(t_1 \) and \(t_2 \), which always contribute to different proportions to the result PT given by \(f_{PT} \). Whereby \(t_1 \) is influenced more by the type of the inert ingredients of the coagulation formulation that govern the dissolution of the tissue factor, \(t_2 \) is mostly influenced by the activity of the applied tissue factor itself and the calcium ion concentration. Additionally, both time period \(t_1 \) and \(t_2 \) are modulated by the reaction temperature, which should be ideally set to or close to 37°C, lower temperature regimes will prolong the coagulation time. However, for hand held devices one will always have to find the best solution between portability, energy consumption and laboratory performance.

Figure 12 shows a simplified block diagram of a meter 80 for use in conjunction with the present invention. The meter 80 can be designed around a processing unit such as the MAXQ2000 microcontroller (available from Dallas Semiconductor Corporation, 4401 South Beltwood Parkway, Dallas, Texas, USA). The processing unit 81 can serve the following control functions: (1) timing for the entire system; (2) processing the data from the light detection means; (3) calculating PT time from the measured data; and (4) outputting PT time or INR value to a display means 83. A memory circuit can store data and the processing unit operating program. The display means 83 can take various forms such as liquid crystal or LED display. The meter 80 can also include a start-stop switch and can provide an audible or visible time output to indicate for applying samples, taking readings etc., if desired.

Processing unit 81 may be programmed with software to allow it to make, in conjunction with meter 80 a coagulation measurement. The light emitted from the light source 20 passes through an optical arrangement 21, and detected by a detection means 23. The software programmed into processing unit 81 can further contain an algorithm to calculate the coagulation time as an International Normalised Ratio, formulated in the mid-1980’s, to standardise PT values so that results from different thromboplastins and coagulation analysers become equivalent. The expression is given below as:
\[INR = \left(\frac{PT_{\text{Patient}}}{PT_{\text{mean-normal}}} \right)^{ISI} \]

where ISI is the International Sensitivity Index, PT patient is the time for coagulation for a blood sample from a patient, mean normal PT is the average PT time for around 20 individuals. The ISI value is given by the different manufactures of Thromboplatin.

The method of using coagulation test element 1 of the present invention can be understood with reference to the block diagram of a meter shown in Figure 12. The user inserts a coagulation test element 1 into a strip holder 82 of a meter 80 which is automatically activated by triggering a 'push to make' switch which may be integrated thereon. Registration features designed on element 1 engage with registration features on strip holder 82 to ensure that element 1 is placed in a correct position. Such correct placement of element is of paramount importance to ensure the operation of combined meter 80 and strip 1. Optionally, the meter 80 can be activated by a user pressing a switch. Accordingly, a user performs a finger prick and applies whole blood to application area 9 of inserted coagulation test element 1.

The volume of blood required for a test to take place in the present invention is in the order of 1\mu L. Since the hydrophilic agent printed on the hydrophobic surface is highly wettable by a physiological or aqueous fluid, the areas of high surface energy creating the hydrophilic pathways of the sample distribution system will exert a positive capillary force onto the applied physiological sample fluid to transport the sample fluid to the separate detection areas. Therefore the physiological sample will rapidly distribute to each sample detection area (6a-c) and activate the coagulation stimulating reagents therein.

Next, coagulation test time starts since the reagent in detection areas 6a-6c aids in the coagulation process allowing the coagulation to take place and the optical properties are processed to give the point at which coagulation has occurred.

Preparation method of the coagulation test element

The coagulation test element of the present invention, which is preferably produced in strip form, can easily be prepared by processes to those of ordinary skill in the arts of printing, punching, and laminating. The design of the coagulation test element allows
a simple and cost efficient production process, which is preferably but not necessarily of a continuous nature.

In a first step of the preparation method, a pattern of the sample distribution system 6 is formed by creating areas of high and low surface energy on a substrate. In a first embodiment, the areas of high surface energy forming the sample pathways 6b and detection areas 6a, 6'a on the first and second surfaces 2a, 4a are created by applying a hydrophilic formulation on a hydrophobic surface of a substrate. As detailed above, it is also possible to create the areas of high and low surface energy by applying a pattern of hydrophobic "guiding elements" on a hydrophilic surface. In the preferred case the substrate has an intermediate hydrophobic character of commercially available transparent polymer films, whereby areas of low and high surface energy of the sample distribution system and sample detection areas are created by printing the hydrophilic pathways underneath or surrounded by the hydrophobic pattern of the hydrophobic guiding elements.

The substrate may be formed of a material like glass, polyvinyl acetate, poly-methylmethacrylate, poly-dimethyl-siloxane, polystyrenes, polyesters and polyester resins containing fluorene rings, polycarbonates and polycarbonate-polystyrene graft copolymers, terminal modified polycarbonates, polyolefins, cycloolefins and cycloolefin copolymers, and/or olefin-maleimide copolymers.

The application of a hydrophilic pattern on a hydrophobic substrate and/or the application of hydrophobic "guiding elements" on a hydrophilic substrate or any combination of it can be accomplished with flexography, lithography, gravure, solid ink coating methods, or ink-jet-printing processes.

However, the preferred fabrication method is flexography, which allows high-resolution printing on rotary presses and supports high-speed production. It is an established technology for printing on polymer film substrates and widely used in the packaging industry. The optical detection process shown in Figures 8a and 8b requires transparent and clear ink with low viscosity for the hydrophilic pattern. Low viscous inks are preferred to achieve a thin and even coating of about 2 - 4 microns. The optical window of the ink needs to be in the wavelength range suitable for the optical detection of the chemical reaction. The requirements for hydrophobic inks, apart from the hydrophobic nature, are less stringent and could be used to decorate the coagulation test element with a desired colour as well, thus non transparent inks are preferred for this step. The operation of a four-colour flexography-printing machine is established practice and provides no operational problems. The same holds for lithography device.
Most convenient for the preparation of the coagulation test element are solvent based inks, which are available in a large variety from various manufactures. Further, all such available inks could be fine tuned with additional additives and pigments to optimise the required parameters. Many of these inks are based on nitrocellulose ethanol or poly vinyl butyral ethanol mixtures and can be obtained e.g. form Sun Chemicals Inc. (35 Waterview Boulevard, Parsippany, NJ, USA) or Flint Ink Inc. (4600 Arrowhead Drive, Ann Arbor, MI, USA).

Even though solvent based or UV curing inks are applicable to prepare the coagulation test element, electron beam (EB) curing inks have some preferred properties. These inks provide highest resistance to mechanical and chemical factors, and contain 100% polymers, optionally with pigments, but no volatile organic solvents and photo initiators, which have proven to affect the stability of sensor chemistry. These positive gains in performance characteristics are derived from the ability of electrons to form cross-linked polymeric films and to penetrate the surface.

Inks used in EB curing make use of the polymerising capability of acrylic monomers and oligomers. Acrylic chemistry has a special significance in modern day inks. (J.T. Kunjappu. “The Emergence of Polyacrylates in Ink Chemistry,” Ink World, February, 1999, p. 40.) The structure of the simplest acrylic compound, acrylic acid, is shown in the formula (I):

\[
\text{CH}_2=\text{CH-COOH} \quad (I)
\]

The double bond in the acrylic moiety opens up during interaction with electrons (initiation) and forms a free radical that acts on other monomers forming a chain (propagation) leading to high-molecular-weight polymers. As mentioned before, radiation induced polymerisation requires no external initiator since radiation itself generates free radicals with the result that no initiating species will be left in the coating.

A variety of acrylic monomers are available for EB curing that range from simple acrylates such as 2-phenoxyethyl acrylate and isooctyl acrylate, to pre-polymers like bisphenol A, epoxy acrylate and polyester/polyether acrylates (R. Golden. J. Coatings Technol., 69 (1997), p. 83). This curing technology allows the design of “functional inks” with the focus on the desired chemical and physical properties without the necessity of a solvent and curing chemistry required by other inks, which may complicate the design process.
Generally suitable hydrophobic inks might contain monomers, oligomers, and pre-polymer with hydrophobic functions like iso-octyl acrylates, dodecyl acrylates, styrene or silicon derivates, systems with partly fluorinated carbon chains, and additional hydrophobing additives and/or fillers such as hydrophobing agents belonging to the TEGO Phobe Series (TEGO Chemie Service, Essen Germany), hydrophobic pigments such as copper phthalocyan, carbon, graphite, or hydrophobic fillers such as silicon modified fumed silica or PTFE powders and PTFE granulates. Due to the vast variety of additives, pigments, and fillers the above suggested compounds will only have exemplary character.

Inks with hydrophilic functions can be realised from a wide selection of ethanol and water-soluble polymers and polymer mixtures thereof. Useful are polymers and polymer derivatives, copolymers and compounds base on alginate, cellulose and cellulose ester, hydroxyethyl cellulose, gum, acrylic acid, polyvinylalcohol, polyethylene-glycol, polyethylene-oxide, vinylpyrrolidone, polystyrene sulfonate, poly(methyl vinyl ether/maleic acid), vinylpyrrolidone/trimethylammonium copolymers, and alkyl-phosphocholine derivates.

Further optimisation can be achieved with organo-modified silicone acrylates additives, which are a cross-linkable species of organo-modified polysiloxanes, and fluorinated surfactants. A general suitable coating provides a contact angle with water of typically less than 35° and a surface energy of typically more than 50 mN/m.

The second step of the production process comprises the application of the coagulation formulations, containing the coagulation stimulating reagent and additional agents to produce a printable and/or dispensable ink forming a uniform layer within the sample detection areas.

In a preferred embodiment, the amount of thromboplastin on first surface 2a of base layer 2 is precisely dosed using a suitable method such as ink jet printing. Indeed it would be obvious to those skilled in the art that other dosing techniques could be utilised for the purposes of this invention.

On all corresponding sample detection areas of the opposing surface will be furnished with the required quality control formulations containing the appropriated amount of alginate or another coagulation accelerator, EDTA or other coagulation inhibitors, and the fluorescent molecular rotor as detection aid if required for the anticipated detection regime.

Since the concentration level respectively the total amount of the coagulation stimulating reagent applied to the predetermined sample detection areas 6a1 to 6a3 is responsible for the sensitivity and dynamic range of the various discussed coagulation test
elements, as well as the concentration level and precision of the applied quality control compounds is responsible for the accuracy of the test results, it is paramount for this application to provide coagulation test elements with a precise dosage of the above elements, compounds, and ingredients. Such precise dosage can be implemented for example using a micro dispenser system (e.g. available from Veremes Technik GmbH & Co. KG, Palmkamer Str. 18-20, D-83624 Otterfing, Germany). The coating formulations must be prepared to be highly soluble by the liquid sample medium to allow a fast and residue free reconstitution after the introduction of the sample fluid.

The next step comprises the lamination procedure, in which the base and cover layer presenting the first and second surfaces of the sample distribution system are laminated onto a centre layer, thereby defining a distance between the first and second surface of the base and cover layer. The centre layer provides a discontinuity to create a cavity for the sample distribution system in the areas where the sample distribution system is formed on the first and second surface of the base and cover layer. The patterns of high and low surface energy formed on the first and second surface of the base and cover layer must be aligned to be mostly congruent to enable the formation of a functional sample distribution system between the first and second surface.

Precise xy-registration of base and cover layers becomes a critical task for the function of the element, if this registration is not achieved, the sample distribution system will not function properly and/or will have a higher variability with regards to the specified sample volume. Registration tolerances should be within +/- 5% of the width of the hydrophilic pathways to achieve good performance.

Figure 13 shows the top view (left) and cross-section (right) of the coagulation test element and the effect of registration quality. In case of 13a the sample distribution system is assembled properly with good alignment of the hydrophilic pathways of the first 2a and second surface 4a. The result of an improperly aligned coagulation test element is given in Figure 13b. Although, the spacer between the base 2 and the cover layer 4 is identical in case of 13a and 13b the sample volume is falsely enlarged in case b, since the sample fluid covers partly the hydrophobic guiding elements of the sample distribution system. The effect is caused by the sample fluid inside the coagulation test element, which seeks to minimise the surface area exposed to air in order to gain the most favourable energetic state and therefore overriding the effect of the hydrophobic areas.

In an alternative embodiment, as shown in Figure 13c, the sample distribution system of the cover layer 4 is designed about 10% smaller as the sample distribution system of
the base layer 2 thus the total sample volume of the coagulation test element is defined by
the extensions of the sample distribution system of the base layer, allowing a higher
tolerance for the registration process during manufacturing without compromising the
precision of the required sample volume.

The application of the centre layer, which may be a double-sided adhesive tape with
a preferred thickness of 80 microns or alternatively a hot melt adhesive deposited in an
equivalent thickness, is less demanding because of the relatively large discontinuity in the
material compared to the size of the hydrophilic pathways. Registration is especially
important in continuous production lines where the substrate progresses with several meters
up to tens of meters per minute. Substrate expansion and web tension make the registration
in x-direction (the direction of the web movement) more difficult than the y-direction
perpendicular to the web movement.

A preparation method for flexible polymer films providing an accurate registration
of the patterns of first and second surface is illustrated in Figure 14 showing parts of a con-
tinuous web production process. In a first production step according to Figure 14a, patterns
of the sample distribution system 6 of the base and cover layer are printed on one web
substrate 49, which represents the material of the produced coagulation test elements. As
illustrated in Figure 14, the printed patterns of the sample distribution systems 6 are arranged
on the web substrates 49 in such a manner that two sample distribution systems are opposite
to each other left and right from a mirror line. Optionally, the sample distribution system can
be linked in the areas which form the sample application areas. Thus, the position of the
predetermined detection areas 6a, 6'a is fixed relative to each other and remains unaffected
by the material expansion and web tension.

The dotted lines 50 indicate the future cutting lines to segregate the coagulation test
elements into strips, while the dotted lines 51 indicate the mirror line of the strip artwork
and the future fold line of the web substrate.

After printing the flow paths of the coagulation test element, the detection areas 6a,
6'a of the sample distribution system are coated with the required formulations. For
example, the detection areas 6a of the upper row of the web substrate 49, which will
represent the second surface of the coagulation test element, are coated with the quality
control formulations. One of the quality control formulations (e. g. positioned in 6’a1) do
not contain active compounds that either inhibit or promote the coagulation reaction and
therefore deliver the determined result of the coagulation analysis, whereas the detection
areas 6’a of the lower row of the web substrate 49, which will represent the first surface of
the coagulation test element, are coated with the coagulation formulations containing the tissue thromboplastin to initiate the coagulation reaction. In the special cases other compounds than tissue thromboplastin will be coated on the sample detection areas 6a, which will trigger and activate the coagulation pathway in different positions to determine the functionality of other coagulation factors.

Thereafter, an additionally layer is laminated on one of the surfaces, e.g. the surface 2a of the base layer 2, representing the centre layer 52 of the coagulation test element as shown in Figure 14b. The centre layer 52 may be formed of double-sided adhesive tape or a hot melt adhesive, which provides breakthroughs 5 exposing the sample distribution systems 6 to create cavities for the sample distribution systems in the coagulation test elements after the final assembly step.

The coagulation test element of the present invention is then assembled by folding the two sides along the mirror line 51, e.g. with help of a folding iron or other suitable equipment, as illustrated in Figure 14c creating a folded and laminated web 53 as shown in Figure 14d. Subsequently, a press roller can secure a tight connection between the centre layer, base and cover layer.

Finally, the laminated web 53 is cut or punched in to the desired product shape, whereas line 50 projects an exemplary shape of the final coagulation test strip onto the web 53 before the segregation process. With the preparation method illustrated in Figure 14 the top part of the substrate can be folded on to the bottom part without the danger of loosing the registration in the x-direction of the web and provides an easier method to get the right registration of the first and second surfaces forming the sample distribution system in comparison to single sheet process.

It will be obvious for someone skilled in the art that base and cover layer are exchangeable in the discussed embodiments without affecting the principle of the invention.

This invention provides a test system for determining the coagulation characteristics of plasma and whole blood samples consisting of a coagulation test element and a small and simple hand held meter device suitable for home and point of care settings. The coagulation test element is provided with an integrated quality control system suitable for dry reagent test strip format with a very small sample volume of about 0.5μL. The production of the inventive coagulation test element involves only a small number of uncomplicated production steps enabling an inexpensive production of the element.
Claims:

1. A test element for the determination of coagulation in a plasma or whole blood sample having a first surface (2a) and a second surface (4a) in a predetermined distance opposite from each other, said both surfaces being provided with two substantially equivalent patterns forming areas of high and low surface energy which are aligned mostly congruent, whereby the areas of high surface energy create a sample distribution system (6) with at least one detection area (6a), wherein the detection area(s) (6a, 6'a) of the first and second surfaces (2a, 4a) is/are provided with at least one coagulation stimulation reagent.

2. A coagulation test element according to claim 1, wherein the sample distribution system (6) comprises at least two coagulation detection areas (6a1, 6a2).

3. A coagulation test element according to claim 2, wherein at least one coagulation detection area is provided with a formulation containing a coagulation accelerator which promotes a fast and complete coagulation of the sample fluid (positive control).

4. A coagulation test element according to claim 2, wherein at least one coagulation detection area is provided with a formulation containing a coagulation inhibitor which suppresses the coagulation in the sample fluid (negative control).

5. A coagulation test element according to claim 2, wherein the sample distribution system (6) comprises at least three coagulation detection areas, at least one coagulation detection area being provided with a formulation which accelerates the coagulation of the sample fluid (positive control), and at least one coagulation detection area being provided with a formulation which suppresses the coagulation in the sample fluid (negative control).

6. A coagulation test element according to at least one of the preceding claims, wherein the coagulation stimulating reagent(s) is/are thromboplastin and/or calcium ions.

7. A coagulation test element according to at least one of the claims 2 to 6, wherein the formulation accelerating the coagulation of the sample fluid (positive control) comprises a gelling agent.
8. A coagulation test element according to at least one of the claims 2 to 7, wherein the formulation inhibiting the coagulation in the sample fluid (negative control) comprises lithium heparin and/or EDTA.

9. A coagulation test element according to at least one of the preceding claims, wherein at least one of the first and second surfaces 2a, 4a of the detection area(s) (6a, 6’a) is/are provided with a compound allowing the determination of the coagulation reaction by transmission or absorbance photometry.

10. A coagulation test element according to at least one of the preceding claims, wherein at least one of the first and second surfaces 2a, 4a of the detection area(s) (6a, 6’a) is/are provided with (a) compound(s) allowing the determination of the coagulation reaction by fluorescence.

11. A coagulation test element according to claim 10, wherein the compound(s) allowing the determination of the coagulation reaction by fluorescence is/are (a) fluorescent molecular rotor(s).

12. A method for preparing a coagulation test element comprising the steps:
 - generating areas of high and low surface energy on a base layer (2) having a first surface (2a), the areas of high surface energy forming a hydrophilic sample distribution system (6) with at least one predetermined detection area (6a),
 - generating a corresponding pattern of areas of high and low surface energy on a cover layer (4) having a second surface (4a),
 - coating the predetermined detection area(s) (6a) of the first surface (2a) and/or second surface 4a with at least one coagulation stimulation reagent,
 - applying the layers of first and second surfaces to the opposite sites of a centre layer (3) having a discontinuity (5) which provides a cavity for the sample distribution system (6) formed by the areas of high surface energy on the first and second surfaces (2a, 4a) of the first and second layer (2, 4).

13. A method according to claim 12 comprising the additional steps of:
- coating at least one of the first and second surface 2a, 4a of a further coagulation detection area (6a2) with a formulation containing a coagulation accelerator which promotes a fast and complete coagulation of the sample fluid (positive control),
- coating at least one of the first and second surface 2a, 4a of an other coagulation detection area (6a3) with a formulation containing a coagulation inhibitor which suppresses the coagulation in the sample fluid (negative control).

14. A method according to claim 12 or 13 comprising the additional step of:
- coating at least one of the first and second surface 2a, 4a of the coagulation detection area(s) with (a) compound(s) allowing the determination of the coagulation reaction by fluorescence.

15. A method for preparing a coagulation test element according to one of claims 12 to 14, wherein said areas of high surface energy are created by applying a water insoluble hydrophilic composition on the first and second surfaces (2a, 4a).

16. A method for preparing a coagulation test element according to one of claims 12 to 15, wherein said areas of low surface energy are created by applying hydrophobic compositions on the first and second surfaces (2a, 4a).

17. A method for preparing a coagulation test element according to one of claims 15 and 16, wherein said hydrophilic and/or hydrophobic composition(s) is/are printed on the first and second surfaces (2a, 4a) by the means of flexography, lithography, gravure, solid ink coating methods, or ink-jet-printing.

18. A method for preparing a coagulation test element according to one of claims 12 to 17, wherein said coagulation stimulating reagent(s) and/or quality control formulation(s) and/or fluorescence detection aid(s) is/are coated on the detection areas (6a, 6’a) of first and/or second surfaces (2a, 4a) by micro-contact printing or micro dispensing.

19. A coagulation test system for the determination of coagulation in a plasma or whole blood sample comprising:
- a coagulation test element according to one of the claims 1 to 11,
- detection means for detecting changes of light absorbance or fluorescence in the serum or whole blood sample fluid located in the predetermined detection area(s),
- processing means for processing the data from the light detection means and calculating the coagulation time and/or INR value, and
- display means for indicating the output values to the user.

20. A method for determining the coagulation in a serum or whole blood sample fluid, said method comprising:
- applying a serum or whole blood sample fluid to a coagulation test element according to one of the claims 1 to 11,
- inserting the coagulation test element into a meter device including detection and processing means,
- reading the output values on a display means.

21. A coagulation test element for determining the coagulation in a serum or whole blood sample fluid having a first surface and a second surface in a predetermined distance opposite from each other, wherein one of the first and second surface is provided with a hydrophilic/hydrophobic pattern and the corresponding surface provides a homogeneous pattern of hydrophilic pixels surrounded by a hydrophobic area therefore creating a surface with semi hydrophilic and semi hydrophobic character, whereby the hydrophilic and semi hydrophilic areas create a sample distribution system with at least one detection area, wherein the detection area(s) of the first and second surfaces is/are provided with at least one coagulation stimulation reagent.
Spectrum of whole blood

Fig. 10
Coagulation Time of whole blood measured with Thromborel S

Fig. 11

Absorbance

Time [min]
Fig. 12

Display

Holder

Microprocessor
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

GOIN33/49 BOIL3/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GOIN BOIL

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 00/56808 A (AMERSHAM PHARMACIA BIOTECH AB; LARSSON, ANDERS; OCKLING, ANETTE; DERAN) 28 September 2000 (2000-09-28) page 4, line 14 - page 5, line 33 page 11, line 16 - page 11, line 24 page 12, line 10 - page 13, line 32 abstract</td>
<td>1-21</td>
</tr>
<tr>
<td>Y</td>
<td>WO 02/076878 A (WISCONSIN ALUMNI RESEARCH FOUNDATION) 3 October 2002 (2002-10-03) abstract; figures paragraphs '0003!', '0004!', '0035!', '0036!', '0040!', '0041!'</td>
<td>1-21</td>
</tr>
</tbody>
</table>

[X] Further documents are listed in the continuation of Box C.

[X] See patent family annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

S document member of the same patent family

Date of the actual completion of the international search: 22 February 2006

Date of mailing of the international search report: 10/03/2006

Name and mailing address of the ISA:

European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HJ Rivwijk
Tel. (+31-70) 340-3040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer: Smith-Hewitt, L
<table>
<thead>
<tr>
<th>Category*</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>US 5 629 209 A (BRAUN, SR. ET AL) 13 May 1997 (1997-05-13) column 9, line 45 – column 10, line 17; figure 4</td>
<td>2-8,13, 18</td>
</tr>
<tr>
<td>A</td>
<td>US 4 849 340 A (OBERHARDT ET AL) 18 July 1989 (1989-07-18) column 14, line 44 – column 14, line 64; figure 22 column 22, line 58 – column 19, line 24</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>WO 93/22453 A (AVOCET MEDICAL, INC) 11 November 1993 (1993-11-11) examples 7,9</td>
<td>1-21</td>
</tr>
<tr>
<td>A</td>
<td>US 5 628 961 A (DAVIS ET AL) 13 May 1997 (1997-05-13) column 6; figures abstract</td>
<td>2-8,13</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [] Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. [] Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. [] Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. [] As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. [X] As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. [] As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. [] No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the Invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

[] The additional search fees were accompanied by the applicant's protest.

[] No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2004)
This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

1. claims: 1-20

A test element for the determination of coagulation in a plasma or whole blood sample having a first surface (2a) and a second surface (4a) in a predetermined distance opposite from each other, said both surfaces being provided with two substantially equivalent patterns forming areas of high and low surface energy which are aligned mostly congruent, whereby the areas of high surface energy create a sample distribution system (6) with at least one detection area (6a), wherein the detection area(s) (6a, 6'a) of the first and second surfaces (2a, 4a) is/are provided with at least one coagulation stimulation reagent; a method of manufacturing such an element; a kit incorporating the element and the use of the element.

2. claim: 21

Claim 21:
A coagulation test element for determining the coagulation in a serum or whole blood sample fluid having a first surface and a second surface in a predetermined distance opposite from each other, wherein one of the first and second surface is provided with a hydrophilic/hydrophobic pattern and the corresponding surface provides a homogeneous pattern of hydrophilic pixels surrounded by a hydrophobic area therefore creating a surface with semi hydrophilic and semi hydrophobic character, whereby the hydrophilic and semi hydrophilic areas create a sample distribution system with at least one detection area, wherein the detection area(s) of the first and second surfaces is/are provided with at least one coagulation stimulation reagent.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 60003642 D1 07-08-2003 DE 60003642 T2 13-05-2004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ES 2200861 T3 16-03-2004 JP 2003526702 T 09-09-2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 6967101 B1 22-11-2005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 02076878 A 03-10-2002 CA 2430651 A1 03-10-2002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP 1358123 A2 05-11-2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 5629209 A 13-05-1997 NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 2004028566 A1 12-02-2004 NONE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AU 613623 B2 08-08-1991 CA 1591888 A 02-11-1988</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA 1310566 C 24-11-1992 DE 3853457 D1 04-05-1995</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WO 8807666 A1 06-10-1988</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA 2133983 A1 11-11-1993 DE 69329280 D1 28-09-2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE 69329280 T2 15-03-2001 DK 638127 T3 18-12-2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA 2175228 A1 04-05-1995 CN 1138377 A 18-12-1996</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE 69433691 D1 13-05-2004 DE 69433691 T2 14-04-2005</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>